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A simple valence electron-only theory based on an approximate frozen core 
approach and an exact core-valence strong orthogonality condition is 
developed for atomic and molecular systems. A unique reduced basis is 
introduced in which both core and valence orbitals are expanded. The core 
representation is roughly approximated, and the valence orbital overlap with 
the corresponding all-electron reference functions is nearly exact. The size of 
the reduced basis in terms of primitive functions is practically the same as 
that adopted by effective core potential methods in which the valence orbitals 
have the correct nodal properties. Results obtained with the present approach 
are presented for LiO, BeO and CaO molecules, and compared with the 
corresponding all-electron frozen core calculations. In addition, a detailed 
investigation on Li,Be clusters (n = 1 , . . . ,  6) is carried out. 
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I. Introduct ion 

In this paper our previously proposed valence electron only (VEO) method [I]  
for the determination of  the valence wavefunction is improved in some aspects 
and extended to open-shell systems. Valence electron methods are aimed at 
reproducing all-electron (AE) results without appreciable loss of  accuracy, when 
the same kind of wavefunction and valence basis is used. The methods so far 
proposed may be classified into three main groups: the effective core potential 

* Dedicated to Professor J. Kouteck2~ on the occasion of his 65th birthday 
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(ECP) methods [2-5], the methods based on the partitioning of the atomic 
volumes into core and valence regions [6] and, finally, the methods based on the 
frozen core approximation [7]. The present method belongs to this last group 
and may be characterized shortly as an ab initio reduced basis frozen core 
approach. 

As shown in [7] the frozen core approach offers the advantage of preventing 
basis set superposition error when the innermost core orbitals are expanded in 
a relatively small basis of primitive functions. The atomic core orbitals usually 
employed in standard frozen core calculations are determined by optimizing the 
total atomic energy. However, when the interest is focused on studying valence 
electron wavefunctions, the use of energy optimized core orbitals is not par- 
ticularly convenient; in fact, the core orbitals are just required to yield an effective 
Coulomb-exchange potential for the valence electrons. The basic idea underlying 
our procedure comes from the observation that the core-valence potential and 
the core-valence orthogonality constraints, characteristic of a good quality refer- 
ence atomic basis set, can be approximated with high accuracy using a relatively 
small number of primitive functions for an "effective" description of the core 
orbitals. Obviously, the reduced basis is inadequate to give an accurate core 
electron energy. Its optimization is carried out with the aim of reproducing the 
shapes (including all the nodal properties) and the one-electron energies of the 
valence orbitals, expanded in a chosen reference basis set. This allows one to 
deal with valence orbitals of good quality, while the number of primitive functions 
necessary for the description of the core orbitals is smaller than that used in 
standard frozen core calculations. 

The formalism is based on the separability theory [8] applied to many-electron 
systems in which strong orthogonality among wavefunctions of distinct subsys- 
tems (namely core and valence electrons) is assumed when evaluating the total 
energy. From this basic assumption the form of the one-electron effective hamil- 
tonian arises in a natural way (Sect. 2). Details on the maximum overlap procedure 
adopted in the determination of  the reduced atomic basis are given in Appendix 
I. Appendix 2 contains the description of  the direct energy minimization pro- 
cedure devised for many-shell systems with frozen core orbitals. 

Atomic results obtained from the optimization of the reduced basis sets for LI, 
Be, O and Ca atoms are presented together with test calculations on LiO, BeO 
and CaO molecules. The electronic structure of small Li ,Be clusters is analysed 
and the reliability of the present computational approach in predicting minimum 
geometries, stabilities and ionization potentials is discussed on the basis of 
comparisons with the corresponding results of an AE treatment. 

2. Outline of the method 

Consider a molecular system built up by N atoms with individual core regions 
C1 ( I  = 1 , . . . ,  N) ,  each containing Nc~ electrons. The valence region of the 
whole molecular system contains N~ electrons which are supposed to give the 
most important bonding features. In this context, assuming that the total electronic 
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wavefunction may be expressed as a generalized product of functions in which 
the various group functions (i.e. the Slater determinants ~Pc and ~%) satisfy the 
strong orthogonality conditions r = 0  ( t  denotes complex conjugate). The 
total energy of the system can be expressed as [5] 

E = ( ~ I H o I & ~ ) + E E c , +  E Ec,,cj, 
I I > J  

where EczcJ is the core-core interaction and Ect is the core energy. The effective 
hamiltonian H~ for the No valence electrons i,j (i , j  = 1 , . . . ,  No) is given by 

Ho =~. { - 1 / 2 A ~ - ~ ,  Z1/ra + ~ k [ 2 J C ' ( i ) - K C ' ( i ) ] }  + y'i>j 1/riy 

= E L ( i ) +  Z g(i,j).  
i i > j  

The first term of the last expression includes the core-valence interaction energy, 
(~p~l~ifc(i)lq~v), and the second term includes the intravalence energy 

(q~o 12 0 g( i,J)l ~o). 

Working within the conventional frozen core approximation, the orthogonality 
conditions can easily be taken into account. However, the core-valence orthogon- 
ality generates a modified valence basis which contains contributions from all 
the core orbitals ~ ci. This represents a severe drawback since the evaluation of 
the valence electron energy requires all the integrals needed in standard AE 
calculations. The same considerations apply to all the VEO procedures which 
explicitly adopt projection operators which are built with core orbitals expanded 
in a basis different from the one actually used for describing the valence states [3]. 

In order to overcome these difficulties it is convenient to define a reduced basis 
(that is a basis of relatively small dimensions) determined in such a way that the 
valence states computed with a reference AE basis are almost exactly reproduced, 
while the corresponding core states are approximated to a chosen degree of 
accuracy. The use of the reduced basis has two important consequences: the 
nodal properties of the reference valence AE orbitals are nearly exactly repro- 
duced and, as the reduced basis dimension increases, the results become identical 
to those of frozen core calculations carried out with the AE reference basis set. 

In the following, the procedure adopted in determining the reduced basis is 
briefly discussed. A given reference Gaussian basis set/z of dimension no is used 
to expand the atomic orbitals q~ which, following chemical intuition, may be 
classified as core orbitals c ( j =  1 , . . . ,  mc) and valence orbitals ~ ( k =  
1 , . . .  mr). Correspondingly, the basis functions /x can be partitioned into two 
subsets/~ = (/x c,/z~), where the functions ~z c contribute most to the expansion 
of the core orbitals and similarly/x v to the expansion of the valence orbitals. 

Now we introduce a new atomic reduced basis set X 

x = (xlX2" �9 �9 X~r) 

of dimension n~ smaller than that of the reference basis. The atomic core q~ c and 
valence ~ orbitals are approximated by expanding them in terms of X. Since 
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the reduced basis must be able to describe the valence orbitals with high accuracy, 
it is natural to assume that this basis is formed by the /z ~ functions plus some 
tighter functions. The purpose of the tighter functions is to provide both an 
optimum description of the nodal properties of the valence orbitals and an 
effective core potential by roughly approximating the core orbitals. Starting with 
the reference orbitals r = ( c  v)=/xT, the new orbitals q5 = ( f f c f fv )=xV are 
determined by computing the expansion coefficients V according to a maximum 
overlap criterion as described in Appendix 1A. To improve the description of 
the valence orbitals ff~, some of the exponents a x are optimized at SCF level by 
minimizing the functional 

i 

Obviously, this procedure also affects the shape of the core orbitals ~c  which 
provide the effective Coulomb-exchange potential. 

In molecular calculations the atomic basis is usually employed in a contracted 
form, with coefficients taken equal to the expansion coefficients of the SCF atomic 
orbitals. In the present approach, nc contracted atomic orbitals are defined as 

q~ ' = A V'  = x C W .  

and the coefficient V' are determined according to the maximum overlap criterion 
(Appendix 1B). 

The core-valence orthogonality, which is automatically satisfied in atomic sys- 
tems, must also be satisfied and preserved in molecular systems when the optimiz- 
ation of the valence electron energy is performed. To this aim, after the basis set 
of atomic orthogonal orbitals ~(X) or q~'(A), denoted simply by q~ _ ( ~ c q ~ ) ,  has 
been expanded in a basis o- (X or A) of dimension n(nr  or no): 

= ( r  c,p~) = ~ r V =  ~ r ( v C v ~ ) .  

the following steps are carried out. 

1. When non-negligible core-core overlap between different centers occurs, the 
core orbitals r  must be orthogonalized according to 

~ c  = r  where S c  = VCt  o'to-V c. 

2. The projector p C  = ~ c ~ c t  is used to generate the valence basis orthogonalized 
with respect to the core: 

~~  = ( I .  - P c ) c r V  ~ = ~Q. 

with overlap matrix (of  order n~) S~ = Q t o r t o ' O .  

3. S~ is used to obtain the valence orthogonal basis 

~0~ = o-T. 

by means of the Schmidt method. 

In order to avoid a cumbersome two-electron integral transformation from the 
basis o- to the basis v ,  it is preferable to work in the full or space of dimension 
n which includes mr redundancies due to the ~ c t ~  = 0 constraints. This requires 
only a simple transformation of the Fock matrices. 
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4. The orbital variation leading to the minimization of the valence electron energy 
is accomplished by an orthogonal transformation U (of order nv) of the type 

= TU,  with t ]U = UU = I,o. 

which maintains the orthogonality of the orbitals q~v among themselves and 
against the core orbitals c (see Appendix 2). 

3. Preparation of atomic reduced basis 

In our previous paper [1] the reduced basis have been determined for Li, Na, K 
and Cu atoms and tested in molecular calculations on the Li2, Na2, K2 and Cul l  
systems. In the present work the reduced basis is computed for Be, in order to 
study mixed LinBe clusters, and also for Ca and O atoms, in order to compare 
our results on LiO, BeO and CaO with those recently obtained by other VEO 
methods based on the ECP approach [4, 5]. 

For first row atoms, the reference AE basis (9/5) have been taken from [9], while 
for Ca the basis (14/9) of [10] has been augmented by two diffuse p functions 
[10] acting as polarization functions in the molecular calculations. 

The results concerning the electronic ground states of the considered atoms are 
reported in Table 1 [11], where comparison is presented with the AE results. 
Both orbital energies and orbital shapes (as shown by the overlap integral value) 
of the reference AE valence states are reproduced with high accuracy. This 
indicates that the approximate representation of the core states in the reduced 
basis is sufficiently accurate to mimic the core-valence Coulomb and exchange 
potentials and also the core-valence orthogonality. The saving in computational 
time which can be achieved is estimated by considering that, for instance, for 
atoms K-Cu the number of primitive functions is 47 in the AE reference basis 
[10] and 26 in the optimized reduced basis. The actual dimension of the reduced 
basis is nearly one half of the reference AE one for the angular symmetries which 
include both core and valence states. In addition, the dimension of the reduced 
basis is close to that of the ECP approaches in which the pseudo-valence orbitals 
have the correct nodal properties [4, 5]. 

4. Molecular calculations 

4.1. Oxides  

In Table 2 our results on LiO, BeO and CaO are compared with frozen core 
calculations carried out with the AE reference basis and with recent ECP studies 
[4, 5]. The present SCF calculations have been performed using the basis of Table 
1 with the following contraction schemes: (311/11) and (311/2) for Li and Be; 
(311/32) and (22211/2211) for O and Ca atoms, respectively. The results concern- 
ing equilibrium bond distances, harmonic frequencies, dipole moments and 
dissociation energy compare well with those obtained with a full reference basis 
and by ECP calculations [4, 5]. This confirms the reliability of the reduced basis 
approach for highly ionic molecules, as well as for covalent molecules. 
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Table 1. Optimized reduced basis sets for Li, Be, O and Ca atoms a 
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Exponents Contraction Exponents Contraction 
coefficients coefficients 

Li(2S) 
S 

Be (iS) 
8 

O (ap) 
S 

Ca ('S) 
S 

27.05303 0.095502 
3.96364 0.503636 
0.78325 0.554430 
0.07170 1.000000 
0.02876 1.000000 

e(2s) = -0.1955 (-0.1963) 

43,34113 0.117000 
6,73201 0.490153 
1.59634 0.535372 
0.17279 1.000000 
0.05861 1.000000 

e(2s)= -0.3079 (-0.3077) 

p 0.24592 0.511531 
0.06237 0.612820 

(~AE t ~ )  = 0 .99996 

p 0.50816 0.511531 
0.12888 0.612820 

(~AE 1.~) = 0 .99997 

243.47194 0.082714 p 11.67587 0.143412 
39.96437 0.381035 5.93620 0.150702 
9.39382 0.660253 2.15297 0.799647 
0.92218 1.000000 0.69151 0.651214 
0.28772 1.000000 0.20730 0.445177 

e(2s) = -1.2418 (-1.2418) (~AE1~)=0.99997 
e(2p) = -0.6288 (-0.6290) (~AE1~)=0.99995 

550.21923 0.264275 p 14.67977 0.720214 
83.79586 0.828312 4.90273 0.353796 
7.90510 0.457825 0.78469 0.911838 
3.97775 0.563383 0.30900 0.111297 
0.97706 0.484274 0.11247 1.000000 
0.39615 0.551810 0.04039 1.000000 
0.06594 1.000000 
0.02690 1.000000 

e(4s) = 0.1955 (-0.1955) (~AE] r = 1.00000 

a In parenthesis the orbital energies of the AE reference basis are reported. (~AE] q)) is the overlap 
integral between reference AE and reduced basis valence orbitals 

4.2. Mixed LinBe clusters 

In  r ecen t  years ,  the  e l e c t r o n i c  s t ruc tu re  o f  sma l l  a lka l i  a n d  a l k a l i n e - e a r t h  me ta l  

c lus ters  has  b e e n  the  o b j e c t  o f  in t ense  t h e o r e t i c a l  s tudy  at  d i f fe ren t  levels  o f  

a p p r o x i m a t i o n  [12]. T h e  s t udy  o f  m i x e d  spec ies ,  h o w e v e r ,  is a l m o s t  c o m p l e t e l y  

l ack ing ;  t he  o n l y  e x a m p l e s  are  the  H F - C I  s tud ies  o f  K o u t e c k y  a n d  P e w e s t o r f  
[13] on  L inBe  sys tems  a n d  tha t  o f  B a u s c h l i c h e r  et al. on  sma l l  a l ka l i - t r ans i t i on  

m e t a l  c lus ters  [14]. 

T h e  L inBe  c lus ters  h a v e  b e e n  c o n s i d e r e d  in t he  p r e s e n t  i n v e s t i g a t i o n  in o r d e r  

to also c h e c k  the  re l i ab i l i ty  o f  o u r  V E O  p r o c e d u r e  aga ins t  t he  A E  resul t s  on  
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Reduced basis a 

A B FC-AE b ECP ~ 

LiO (2II) 
r e (a.u.) 3.258 
/z e (D) 6.77 
w e (cm -~) 888 
D e (eV) 1.26 

BeO (~E +) 
r e (a.u.) 2.572 

P~e (D) 7.41 
w e (cm -l)  1510 
D r (eV) 0.51 

CaO (iX+) 
r e (a.u.) 4.444 
~ ( o )  4.28 
w e (cm -1) 311 

Dr (eV) -2.59 

3.205 3.190 3.224 
6.66 6.60 7.37 

885 878 773 
1.47 1.44 2.12 

2.497 2.489 2.528 
7.06 7.01 7.72 

1721 1707 1544 
1.01 0,92 3.37 

4.375 5.032 
4.25 

334 281 
-2.59 -2.74 

a Basis A: (311/2) for Li and Be, (22211/2211) for Ca; Basis B: (311/11) for Li and Be (see text) 
b Results from frozen core calculations using the AE reference basis. (711/11) for Li and Be, (711/32) 
for O and (82211/6311) for Ca (see text) 

The ECP results for LiO and BeO are taken from [4], the De values a from CAS-SCF calculations. 
The ECP results for CaO are taken from [5] 

systems characterized by unusual chemical bonds. The basis sets adopted for Li 
and Be atoms are those of Table 1 in a (311/2) contracted form. Such a basis 
set is only slightly lower in quality than that used in the AE study on LinBe 
clusters [13], and is of  the same type as that used extensively for Lin clusters 
[15]. A geometry optimization with symmetry constraints has been performed 
for a few electronic states of neutral and positively charged LinBe clusters (n ~< 6, 
see chart on p. 400). Table 3 reports the results concerning the best geometry 
parameters, stabilities, and vertical and adiabatic ionization potentials. The stabil- 
ity of the neutral and ionic clusters has been evaluated according to De = 
- E  (Li, Be) + (n - 1)E(Li) + E(Li q+) + (Be) (q = 0.1). 

The best cluster geometries given by our SCF optimization can be rationalized 
by the following simple observations. The Be atom occupies a central position 
of a regular polyhedron, because in this way the number of the Be-Li bonds is 
maximum. All the distortions from the most symmetric configurations (Dooh, D3h 
and Td for Li2Be, Li3Be and Li4Be, respectively) can be explained on the basis 
of Renner-Teller or Jahn-Teller effects [16]. These distortions, however, do not 
decrease the number of  possible Be-Li bonds, with the exception of the Li3Be 
system which is characterized by two Be-Li and two Li-Li bonds. In general, 
however, the cluster stability cannot be entirely ascribed to the Be-Li interaction: 
important Li-Li bonding does occur as shown by the fact that the mean Li-Li 
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F o �9 

v C2v,C v C2v 

T d D4h O h 

bond distance (about 6.5 a.u.) is still comparable with the nearest neighbour 
distance computed for Lin clusters (5.7-6.2) a.u. [15]. 

As for the absolute value of the cluster stability, the present SCF results cannot 
be considered as conclusive, because, as is well known, the electron correlation 
effects can play a crucial role. However, on the basis of  experience derived from 
studies on alkali metal clusters [15] the lack of correlation in our treatment 
probably has no great impact on the basic cluster structure which is usually 
predicted to a good approximation as SCF level. 

From the analysis of the results of Table 3, one can note that the present 
computational method is able to reproduce in a fairly good manner the best 
geometries obtained by the AE treatment. The stability of the clusters is always 
slightly underestimated, even if the qualitative trend is correctly predicted. This 
is not a surprising result considering that the basis set used in the AE study [13] 
includes two p polarization functions on each atom. Possible core polarization 
effects, which can give non-negligible contributions to the cluster stability, can 
be incorporated into our approach according to the method proposed in [17]. 

5, Conclusions 

The results of test calculations made on some oxides and LinBe clusters show 
overall good performance of the proposed reduced basis approach. The method 
is capable of simulating very closely the AE frozen core reference calculations 
with reduced computational effort. The reduction in computational effort is due 
mainly to the sensible reduction of the number of primitive functions included 
in the basis set and to the remarkable simplicity and flexibility of the computational 
procedure. Particularly important is the point that the number of primitive 
functions of  our reduced basis is practically equal to that used in ECP approaches 
[4, 5], and smaller than that of standard frozen core calculations employing 
energy optimized core orbitals. Some advantages offered by the reduced basis 
approach are: (i) valence orbitals come out in a direct way to be very close to 
the corresponding AE ones; (ii) there is no need for parameter determination in 
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Table 3. Results of  reduced basis SCF calculations on LinBe clusters a 
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Cluster Geometry E v (a.u.) D e (eV) IP (eV) b 

Vert. Adiab. 

LiBe + ( ~ + )  r = 5.12 (5.10) -0.96102 0.52 (0.58) 
Li2Be (3B~) r=5.11 (4.86) -1.32321 0.01 (0.26) 4.20 

0 = 73.0 (74.3) 
Li2Be + (2A1) -1.16789 0.96 

(ZB~) -1.15593 0.64 
(2A1) r = 7.60 -1.17650 1.20 

0 = 45.0 
LizBe ( ~ )  r=4 .92  (4.87) -1.33133 0.23 (0.32) 3.67 

0 = 180.0 
Li2Be + 2 + ( Zg -1.19662 1.74 

(ey+) r = 4.96 (5.00) -1.19666 1.74 (1.83) 
0 = 180.0 

Li3Be (2B2) r 1 = 4.81 (4.91) -1.52966 0.44 (0.72) 4.08 
r2= 6.11 (5.98) 
O=80.0 

3.97 

3.66 

LiaBe + (1AI) -1.37960 1.54 (2.13) 
Li4Be (Td)(13T1) r =4.54 (4.51) -1.71431 0.28 (0.74) 2.67 2.66 

(237"1) r =4.50 -1.71292 0,24 
Li4Be + (Td)(4AO -1.61630 2,80 

(27"2) -1.57984 1.80 
(2T1) -1.57770 1.75 
(4A1) r =4.60 -1.61666 2.81 
(2T1) r = 4.56 - 1.58140 1.85 
(2T2) r = 4.56 -1.58050 1.82 

Li4Be (D4h)(1Alg) r = 4.75 (4.69) -1.74576 1.14 (1.25) 3.55 3.55 
Li4Be+(D4h)(ZEu) -1.61527 2.77 

(2E,) r =4.80 -1.61534 2.77 
LieBe (1AI) r = 4.58 (4.52) -2.19233 2.92 (3.28) 3.60 3.60 
Li6Be+( 2 Tlu) -2.06000 4.50 

(2Tlu) r = 4.61 -2.06013 4.51 

a In parentheses the AE results of [13] are reported. See chart for the definition of  the geometry 
parameters: bond distances in a.u., valence angles in degrees. When not given the geometry of the 
ionic form is the same as that of the corresponding neutral cluster 
b IP vert. and IP adiab, mean vertical and adiabatic ionization potential, respectively 

o r d e r  t o  b u i l d  t h e  e f f e c t i v e  c o r e  o p e r a t o r  a n d ,  t h e r e f o r e ,  n o  a d d i t i o n a l  i n t e g r a l s  

a r e  r e q u i r e d ;  ( i i i )  a l l  t h e  o r t h o g o n a l i t y  c o n s t r a i n t s  a r e  e x a c t l y  s a t i s f i e d  a t  e v e r y  

s t e p  o f  t h e  c a l c u l a t i o n .  

Acknowledgements. The authors wish to warmly thank Professor J Kouteckx) for stimulating discussions 
and for having kindly made available the results on Li,,Be clusters prior to publication. 

Appendix 1 

A.  A s s u m i n g  t h e  e x p a n s i o n  c o e f f i c i e n t s ,  T, o f  t h e  o r t h o g o n a l  s e t  o f  f u n c t i o n s  

= (~Ol, � 9  ~O,,o), a r e  k n o w n  i n  t e r m s  o f  t h e  r e f e r e n c e  b a s i s  s e t / x ,  i .e .  ~ = / x T ,  
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then the expansion coefficients V of the mo new functions, ~ = ( s  . . . .  , ~rno), 
expressed in terms of the reduced basis set X, i.e ff = xV, are found by searching 
for the orthogonal matrix Uo which maximizes the quantity 

f (  Uo, ax) = tr (~P*~o Uo). 

Taking Uo = - I  + 2Po ~ (where P0 = I + Xo-Xo) ,  the gradient with respect to the 
independent parameters Xo is given by 

f~ = 2PoX( SoUo - l]oSo)_Po 1, 

where So = q~*~o = Tt~*XVo and the ~0 are some starting orbitals. The stationary 
conditions f~ = 0, i.e. So Uo =/]0So, can be satisfied by finding the singular vectors 
Za and Zb of So, such that 

:Z~SoZb = diagonal, 

and taking Uo = ZbZ~. 

Then, from the initial guess Vo the optimum coefficients V =  VoUo, i.e. the 
optimum orbitals ~ = q3oUo, are obtained. A natural simple choice is V0= 

(X'X) -~/z. 

B. A similar procedure has been followed to determine the best contraction 
coefficients. Let C be the n~ x n~ matrix defining the nc contracted atomic functions 
h according to h = xC. The overlap matrix for the h functions is S~ = C*x*xC. 
The contracted atomic orbitals are defined as r  hV' = x C W  (W is a n~ x rno 
matrix), where both the C and W matrices are considered as independent 
variables, subjected, of course, to the conditions of orthonormality (r r 6~ 
and normalization (Sa),  = 1. Assuming as the initial guess the orthonormalized 

�9 orbitals r =xCS~ ~/2, the new contracted orbitals ~' which have the maximum 
overlap with the ~ =X V orbitals are expressed as ~'=r162 where U~ is the 
orthogonal matrix of order n~ determined by finding the singular vectors Z~ and 
Za of the matrix S~ = q~*~o~ = ~/rx~xCS-hl /2 .  Partitioning the orthogonal matrix Zd 

U~= U~=Za. Uc U~) is given by Z~ and as Za = (ZdZa),~ ~ the matrix U~ = ( o ~ o ~ 

Appendix 2 

The valence electron energy can be written in general as 

Ev -- (~ov [ H~ I ~ )  = E v, tr Rcfc +~E u, vj tr 
i i,j 

where the occupied valence orbitals are collected in ns shells i, j ( = 1 , . . . ,  ns). 
- - 0  The ith shell is formed by moi orbitals expressed as Ti = TUI~ (i = 1 , . . . ,  ns). I~ 

is the diagonal matrix having moi diagonal elements equal to 1 at the right places 
to identify the orbitals belonging to the ith shell and zero elements elsewhere; 

- - 0  v~ is the shell occupation number (integer or fractional); /~ = ~o T~ = TUI~ 
(where I ~ = I ~ )  is the density matrix of the shell i. The definition of Ge(Rj) is 
standard and contains the coupling constants a o and b e which depend on the 
particular state under study. 
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As in our previous work,  the orthogonal matrix U is taken as U = - I n o  + 2 P  -1, 
with P = I , , + X - X ;  the gradient Gx of  E~ is computed with respect to the 
independent variables X. Introducing the definitions 

hi~ ~TTz,T. with h, = v , [ f c + ~  ujG,j(/~j)]. 
J 

and D = ~i  h~ ~ (n~ • too), and assuming the orthogonal matrix U p~trtitioned 
as U=(U~ the null gradient condition may be put into the form 

U~163 - D / ]  ~ = O. 

The entire matrix U may be determined by the singular vectors of  D: computing 
ZeDZf = a diagonal matrix and considering the partition Z~ = (Z~ one has 
u ~ = z ~  and U = 

In order to ensure convergence, a simple level shifting procedure is devised by 
adding arbitrary negative constants, of common value d, say, to the diagonal 
elements of D; or, better, according to our experience, by modifying the matrix 
Dp at the cycle p as 

' - d U p _ l  D p  - D v - o ( d  > 0) .  

and computing U from the singular vectors of the modified matrix D~. 
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